
Dr. Jacopo Pellegrino - http://personalpages.to.infn.it/~japelleg/

Econofisica / Econophysics, Prof. Terna
Anno accademico 2018/2019

ABM / MAS
Tools

http://personalpages.to.infn.it/~japelleg/

Introduction - GAMA
• Gis & Agent-based Modeling Architecture

• Agent-based, spatially explicit, modeling and
simulation platform

• Free and Open Source tool

• GAMA webpage

 2

http://en.wikipedia.org/wiki/Geographic_information_system
https://github.com/gama-platform/gama/wiki

Introduction - JADE
• JAVA Agent DEvelopment Framework

• Multi-agent systems through a middle-ware that
complies with the Fipa specifications

• Free and Open Source tool

• JADE webpage

 3

http://www.fipa.org/
http://jade.tilab.com

Introduction - WADE
• Workflows and Agents Development Environment

• Built on top of JADE

• Java Based + Graphical Workflow design

• Free and Open Source tool

• WADE webpage

 4

http://jade.tilab.com/wadeproject/

Features

 5

GAMA

Features
• Initially developed as an Eclipse plug-in, now is an

independent tool.

• GAML (Gis & Agent-based Modeling Language)
agent-oriented language, close to Java.

• Instantiation of agents from any kind of dataset,
including Gis data (e.g.: road traffic model).

 6

https://eclipse.org
http://en.wikipedia.org/wiki/Java_(programming_language)

Features
• Discrete or continuous topological layers.

• Multiple levels of agency: micro and macro
species, inheritance.

• Multiple paradigms such as mathematical
equations, control architectures, finite state
machines.

 7

Features
• Possibility to define several experiments.

• Development environment with different
perspectives.

• User-friendly interface for both development and
model simulation.

 8

Features

 9

Modeling perspective

Features

 10

Simulation perspective

Modeling

 11

Modeling Introduction
Model file made up of three main parts:

•global

•entities

•experiment

 12

()

 13

Species can be related to each other:

• Nesting: a species can be defined within
another one. The enclosing one is referred as
macro species, the enclosed on as micro
species.

• Inheritance: a child species extends behavior
from the parent, close to what happens in Java.

Species Relationship

Agent Monitoring

 14

It is possible to monitor agents:

• Agent Browser: browse population of agent
species, highlight one, monitor a species.

• Agent Inspector: retrieve information related to
one or more specific agent(s), e.g. position,
speed, internal variables and the like.

 15

Agent Browser

Agent Monitoring

 16

Agent Inspector

Agent Monitoring

Data input and output

 17

Data I/O:

• Data can be imported and exported in and from
the model.

• The project folder allows to gather data to be
imported to be accessible to the code.

• Several common formats can be read
in: .txt, .csv, .png, etc.

Errors Detection

 18

Warnings and Errors:

• As most of the common development tools,
GAMA notifies the user about bad code or
mistakes with warnings and errors (at compile
time), e.g.: bad syntax.

• In case of run time errors the simulation stops
and a description of the problem is provided,
e.g.: null reference, out-of-bound.

Variables, Actions, Reflexes

 19

Modeling
In the following we will take a closer look to the
implementation of a MAS in GAMA focusing on:

• The GAML language (structures, operators, etc.)

• The display of agents and data

• The FIPA communication protocol

Further information can be found in the documentation.

 20

Variables Access:

• global: can be directly accessed by any agent in every part
of the model.

• species variables: can be directly accessed by the agent of
the corresponding species in every part of the model. They
can be accessed remotely, by other agents, with the syntax:
type varName <- remote_Agent.remoteVariable;
int dogAge <- one_of(Dog).age;

• temporary variables: can only be accessed directly and
within the statement block. They stop existing when the
statement is completed.

 21

GAML - Variables

GAML - Actions
Actions Definition:

• An action embodies a capability of an agent, it can take from 0 to
many arguments and return 0 or one variable. It is declared as follows:

action noArgNoReturn{
}
action noArgReturn{
return returnVar;

}
action argNoReturn(type1 arg1, type2 arg2){
}

• It is possible to assign a return variable directly to a variables as
follows:

int myVar <- argReturn(arg1::val1, arg2::"val2");

 22

GAML - Reflexes
Reflexes Definition:

• A reflex can be considered as an action that the agent automatically
performs at any time step or when a given condition occurs. In
reflexes action can be called. A reflex is defined as follows:

reflex everyTime{
//is executed at every time step

}

reflex someTimes when: booleanExpression{
//is executed only when the boolean expression is true

}

• The init is a special kind of reflex that is executed when the agent is
created.

 23

GAML - Control Structures

 24

• Actions and Reflexes have been defined. Now
how to tell agents what to do?

• GAMA provides the most common control
structures to control the flow of execution of
the code. The most used are:

• Loop Statements

• Conditional Statements

Graphical Environment

 25

GAML - Graphics

 26

• A graphical representation can be useful in
several modeling scenarios.

• GAMA allows the display of agents within an
environment referred as the grid.

• Layers of agents can be displayed separately.

• The output of the experiments can be
displayed too.

GAML - Aspects
Aspects Definition:

• The aspect defines the way agents will be displayed. Each species
can have more than one aspects, in the experiment the user indicates
which one will be used for the display. Aspects are defined as follows:

aspect aspectName {
draw shape color: rgb("aRGBColor") at: {position};

}
aspect default {
draw circle(5) color: rgb("red") at: {25,50,0};

}

• As indicated, it is possible to add facets like the color, the position and
the like. It is also possible to use .jpg, .gif, or .png image as icon for
the agent.

 27

GAML - Grid
Grid Definition:

• The grid can be considered a particular set of agents
that share a topology. This agents are automatically
created and are mainly used for the implementation of
the environment where the other species reside.

grid cell width: xSize height: ySize neighbors: neighNb;

• It is also possible to create the grid from a given file
such as a GIS file, see the Road Traffic example.

 28

GAML - Experiments
Display Examples:

display Chart{
chart "Hunger" type: series position: {0.0, 0.0} background: rgb("white") size: {1.0, 1.0}{

data "Hunger" value: hunger color: rgb('blue');
}

}

display Quantities{
chart "How many?" type: pie position: {0.0, 0.0} background: rgb("white") size: {1.0, 1.0}{

data "Cats" value: length(Cat) color: rgb('blue');
data "Dogs" value: length(Dog) color: rgb('red');

}
}

 29

GAML - Experiments
Display Examples:

display myDisplay type:opengl {
grid cell;
species Cat aspect: icon;
species Dog aspect: icon;

}

 30

Communication

 31

Communication

 32

• The communication has to be guaranteed by
standards.

• Agents involved have to be compliant to the
standard.

• Definition of ACL (Agent Communication Languages)
with an explicit, general and well-defined semantics.

• Ability of software systems of exchanging
information and of automatically interpreting its
meaning.

GAML - Communication

 33

• In GAMA the communication is based upon
the FIPA Agent Communication Language.

• FIPA messages are labeled with a
performative that specifies the type of
message in terms of purpose.

• Thanks to the performatives it is possible to
build interaction protocols (patterns of
behavior).

GAML - Communication

 34

List of FIPA performatives:

Introduction to GAMA

 35

QUESTIONS?

Prey / Predator Model

 36

• The prey / predator model is provided in
GAMA as tutorial.

• There are several models with increasing
complexity to let the beginner understand the
features of GAMA and the GAML syntax.

• In the following the model will be explained
and analyzed in detail.

Prey / Predator Model

 37

The aim of this model is to simulate a natural
environment in which two species of animals
coexist.

• The environment is made up of a grid of cells
representing the soil with grass.

• Preys look around for grass to eat.

• Predators look around for preys to eat.

Features

 38

JADE

Features
• Flexible and efficient messaging.

• Java Language.

• Agents are implemented as one thread per agent.

• Graphical User Interface (GUI).

• Can be distributed across machines.

 39

http://en.wikipedia.org/wiki/Java_(programming_language)

Features
• Can be distributed across machines.

 40

Structure of JADE
The platform is made up of:

 41

PLATFORM
MAIN CONTAINER CONTAINER 1

CONTAINER N

AGENT 1

AGENT 2

BEHAVIOUR 1BEHAVIOUR 2

AGENT 3

Structure of JADE
The platform is made up of:

• a main container.

• other (remote) containers.

• each agent is a peer living in its container.

 42

Structure of JADE
The main container contains two “special agents”:

• The AMS (Agent Management System):
• provides the naming service (unique

names).
• represents the authority in the platform

(create / delete).

• The DF (Directory Facilitator)
• provides a Yellow Pages service (agent/

service).

 43

Structure of JADE
Other “special” agents are provided by default:

• RMA (Remote Monitoring Agent).

• Dummy Agent.

• Sniffer Agent.

• Introspector Agent.

• Log Manager Agent.

• DF (Directory Facilitator) GUI.

 44

Starting JADE

 45

SNIFFER DUMMY LOG INTROSPECTOR

Modeling

 46

JADE

 47

Slide from JADE
Tutorial for
beginners

Modeling Introduction

 48

Species can be related to each other:

• Inheritance: a child species extends behavior
from the parent, as happens in Java.

• All agents inherit from jade.core.Agent.

• NO nesting: all agents live inside the container
at the same level.

• Each agent can create other agents.

Species Relationship

Data input and output

 49

Data I/O:

• Common Java I/O libraries.

• It is possible to make agents write to a database.

• It is a good idea to initialize the model using a
configuration file (csv, xml, …).

Errors Detection

 50

Warnings and Errors:

• Running JADE from the shell errors/exceptions
will be prompted and agents may die.

• A good practice is to use an IDE (Eclipse,
NetBeans) which helps a lot.

JAVA - Control Structures

 51

• Behaviours have been defined. Now how to tell
agents what to do?

• JAVA provides the most common control
structures to control the flow of execution of the
code. The most used are:

• Loop Statements.

• Conditional Statements.

• Keep code in methods.

Graphics and
Communication

 52

JADE - Graphics

 53

• JADE does not provide a graphical
environment like GAMA does.

• Users may create their own with external tools.

• JADE is focused on the communication rather
than graphics.

JADE - Communication

 54

• In JADE, as in GAMA the communication is
based upon the FIPA Agent Communication
Language.

• FIPA messages are labeled with a
performative that specifies the type of
message in terms of purpose.

• Thanks to the performatives it is possible to
build interaction protocols (patterns of
behavior).

JADE - Communication

 55

• Asynchronous message passing

• When a message is sent the platform takes
care of putting it in the queue of the receiver
agent.

• There are method to easily reply.

• Pay attention to blocking/non-blocking receive.

JADE - Communication

 56

What happens behind the scenes:

JADE - SnifferAgent

 57

Features

 58

WADE

Features
• All the features provided by JADE

• Agents capable of executing workflows and handle
events

• Workflows designed as set of ordered activities

• Graphical User Interface (GUI) to design workflows

• Has a web interface

 59

Features
• It is possible agents and events in a XML

configuration file: agents will be then deployed in
the specified container

• The WOLF Eclipse plugin allows for the design of
workflows

• The skeleton is automatically generated

 60

Workflows Design

 61

Workflows Design

 62

Features
• Thanks to the WADE GUI it is possible to:

• manage the various configurations

• launch existing workflows and see the result

• A web GUI exists as well for the platform
management but it is not very up to date

 63

WADE GUI

 64

It is possible to load existing
configurations

And launch
workflows

 65

WADE GUI

Dr. Jacopo Pellegrino - http://personalpages.to.infn.it/~japelleg/

Thanks for your attention

